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Discrete effects of the plasma irradiated by an ultrashort, intense laser pulse are investigated.
Although, for most plasmas of interest, the damping of the laser pulse is due to collective plasma
effects, in certain regimes the energy absorbed in the plasma microfields can be important. A
scattering matrix is derived for an electron scattering off an ion in the presence of an intense laser
field. © 1996 American Institute of Physids$$1070-664X96)01604-4

I. INTRODUCTION ~10"® W/cn?. Here we analyze the case of the scattering of
_ _ _ o _ an electron by the ion in the laser field at such intense flux
The increasing degree of interest in high-intensity lasergjensities. The final answer is presented in terms of a scatter-

motivates a theoretical examination of the behavior ofing matrix, which describes interaction of two particles both
plasma in the fields of such lasers. Many recent studies aigside and outside the laser pulse.

devoted to analysis of collective behavidnpwever, there is Suppose a wave packet propagates in xheirection,

a need, addressed here, to examine discrete particle effe¢igin vector potentiah(t—x/c). Suppose further that(t — x/
inside a very short electromagnetic pulse of linear polarizat<o):a(t_x/c>-|—):0_ The pulse is then characterized by
tion and of arbitrary amplitude. _ _ two time scales: its mean frequenay and its total phase
The problem of collisional absorptiéias been studied durationT. The frequency width of the wave packetds,
extensively for low-intensity fields, where the electron veloc-g ,-h thatT sw~1. We assume that the pulse travels at the
ity is not relativistic, and for time scales longer than colli- velocity of light, which is a good approximation for waves in

sional time. Now, very hllgh—lntensny field40'® W/ent and an underdense plasma. This approximation becomes even
above can be achieved in very short pulsdBSor underdense better for very intense wavés

plasma, the duration of such pulses is less than an inverse Describing the interaction of plasma with a laser pulse of

plasma frequency, and, hence, for ideal plasmas, even Iefﬁ;’gh intensity(z~1) is complicated, because one cannot use

than a collision time. Therefore, to find the amount of energyaéjiloolar expansioPwhich assumesy<1. But the limit of a
r

deposited into the plasma_due to its discreteness, a s_ta}ndar y short pulse is tractabfelf the pulse spectra is broad
approach, such as by using the Fokker—Planck collisiona . T
: . : enough, i.e.w,/éw<1, so that the pulse duration is shorter
operator, may not be valid. Neither is one allowed to assum : .
S . an the time for the electrons to set up a collective response,
that the electron motion is nonrelativisfic.

In this paper, we address collisional effects in just thisthe plasma collective field can be treated as a perturbation to

ultraintense, ultrashort laser regime, and we find the changtLDe laser field. Recent advances in pulse compre3siow

in the energy of plasma microfieldasually referred to as a mbake POSS'blﬁt plrj]lslzs ?S srortﬁso.%[hpg, fo_rt_wh|ch tt%?}elo
correlational energydue to the interaction of electrons with a q\ée inequaiity holds for plasmas with densities up
the laser pulse. Although for plasma with an electron tem*=M

peratureT =1 eV and a very intense;~1, short 0.1 ps laser . o
pulse, the damping of the pulse is due to collective effectsPUIse' For distances between them such éft”<eaw/c,

and the collective energy sets up a plasma wake. Here e can treat the ion field as a _perturbation to that, (_)f the
nonlinearity parameter, is 7=ea/mc? wherea is a wave laser. Fpr the fluxes und.er conS|derat|0?\~1), the mini-
vector potentialg is the velocity of light,—e is the electron Mum distance up to vghwh the above inequality holds is
charge, andn is the electron mass. On the other hand, for & min~\TeX, wherer.=e /mc? is the classical radius of an
plasma afT,~0.01 eV and for a very short, moderately in- electron, and is the wavelength of the radiation. For visible
tense pulse, we find that the correlational energy can bBINt, Imin~10"° cm. Classical mechanics can be employed if
greater than the energy stored in the plasma oscillations. Ifhe de Broglie wavelength of an electrap=h/myv~10"°
terestingly, in this regime, in which a plasma is irradiated bycm (v = 1/\1—v?/c?, andv is the typical electron velocity
the laser waves, discreteollisional) effects dominate col- in the laser pulseis less than the distance between two par-
lective effects. In contrast, in an ideal plasma, in the absencécles. We see that over the range of distances, frorto

of any external fields, collisional effects are always down in\e~10"° cm, where classical mechanics is valid, the ion
magnitude by a factor afi,\3, wheren, is an electron den- field remains less than that of the laser, and we can employ
sity and\p is a Debye length. perturbation theory.

The problem of two particle collisions in the presence of ~ The paper is organized as follows: In Sec. |l we calculate
an intense laser pulse remains unexplored for flux densitieshe correlational energy after the pulse. In Sec. lll, we study
so intense that the particle motion becomes relativistic. Ithe relativistic interaction of an electron with an ion in the
corresponds to the nonlinearity parameigrea/mc being  presence of a laser pulse. In Sec. IV, we generalize our re-
of the order unity. For visible lighty~1 for a flux density  sults to finite initial velocity and derive the scattering matrix

Consider an electron and an igg=1) inside a laser
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for ultrashort interactions. In Sec. V, our results are summa-

¥
rized. T
To simplify the presentation in Sec. lll, we use=c / P
=—e=1, so the nonlinearity parameteris, in fact,a; else- S i LLSE>
where, all quantities are expressed in cgs units. e ) ”

Il. CORRELATIONAL ENERGY AFTER THE PULSE FIG. 1. Displacement of the Debye cloud due to interaction with the laser

; . . Ise.
Consider an ultrashort laser pulse, propagating inxthe piise

direction, with the widthdw larger than the plasma frequency

wyp . In this limit, the plasma collective field is smaller than

that of the pulse. To zeroth order&vﬁ/&uz, the only effect of ~ Then the radius vector of the ion ishy. The electrostatic
the laser in the framework of the fluid model is a displace-potential is determined from the solution of the Poisson

ment of each electron in the direction of the pulsé by equation,
1 e \2(T f Ne(r)de
S 2 —hg)= dv, 5
ho 5 cz) fo a’(u)du. ) ¢(—ho) It —hy| 6)

This displacement sets up a plasma wave behind the puld¥€rene(r)=nege;(r) is the cloud density. Using an expan-
with the energy given bye,=27hjn’e?. One can treat this SION I Legendre polynomials,

value as a part of the total energy deposited in the plasma by 1 (1r)S,(ho/r)'P,(cos @), if ho<r,

the puls_,e. Another_ par'_[ comes from the change of the energy m = [ (1hg)3(r/hg)'P(cos ), if he>r,

stored into the microfield$we neglect the plasma correc-

tions to the exit velocity and displacement for very shortthe integration in Eq(5) can be carried out easily. We find an
pulse8), which are always present due to the discrete natur€nergy density differenceAe,,=2mn’e*hgby, where

of the plasma. This energy is usually referred to as a correPo=|dedi|/Te is the classical distance of closest approach.
lational energy. Its equilibrium quantity is obtained by av- The ratio of the increase in the correlational energy to the
eraging the potential energy of two particles, using the two€nergy of collective plasma oscillations is

particle equilibrium correlation function, Aecor bo 00610 Sw 5
ds8s' exXp(—Tr/\p) €pl B ho e 277772Te(ev) ’ ®
Osg(r)=1- T r ) 2
e

indicating the relative importance of collective effects in

whereT, is the plasma temperaturg, is the Debye length, comparison to single-particle effects. Depending on the
andr is the distance between two particles with charggs Pplasma temperature and the pulse duration, this fraction can
andq,. be either greater or less than unity. This is in contrast to an

While the laser pulse clearly disturbs the plasma two{deal plasma, not subject to any external fields, where dis-
particle equilibrium distribution, for a short pulse, each De-crete(collisional) effects are always down in magnitude by
bye cloud is almost intact right after the pulse, since we—n\p. For example, a very shorff~0.01 ps, intense,
assumedw>w, . The change in electron temperature due to7~0.2 electromagnetic pulse, propagating through the
collisions with the ions inside the pulse is smaflf,<T,. Earth’s ionosphere plasmén~10> cm >, T,~0.01 eV,
Hence, one can use for the quantitiesand T, their initial  NA3~1.2x10%, deposits twice as much energy into the
values before the pulse. The correlational energy density d?lasma microfields than into plasma oscillations. We show
the plasma consists of three parts: the regions wherée,/€,>1, in Fig. 2a).

The quantityAe.,, complements the picture of discrete
losses investigated in Ref. 5. It is interesting to compare it
representing contributions from electron—electron, ion—ionwith the incoherent Compton Iossaés [Egs.(38) and(52)
and electron—ion correlations, respectively. Since, in ouin Ref. 5. Their ratio scales like
model, the only effect of the laser ?s an ir?sFantaneous dis- Aey, 1 2 m@  6.75¢10"
placement of each electron by the distahgeit is clear that = ( —=—
the interaction with the wave will change only the teeg. 7°Te 77 Te(eV)
Then its value after the pulse,;, is determined by the po- In Fig. 2(b), we distinguish, by regions im—T, space,
tential energy of the ion in the displaced cloud of electronswhere each of these loss mechanisms dominates.
namely

€i=NGiP(r)), (4)
. . . ., lll. SCATTERING OF AN ELECTRON BY AN ION IN
where ¢(r;) is an electric potential of the cloud at the ion’s THE PRESENCE OF A LASER PULSE

position andn=n.=n; is the plasma density.
Let us choose the coordinate system with its origin atthe ~ We will briefly review the interaction of a single electron
center of a spherically symmetric electron clggée Fig. L~ with a pulse of high intensity, and then we will carry out the

€conr— €cet € T €, )

o

(O]

® 2
5") . )

€Compt 4
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FIG. 2. Regions of relative importance dfe.,, in comparison with(@  exit velocity Vg due to interaction with the ion. We now

energy of collective plasma oscillations arfl) spontaneous Compton proceed to calculate the exit velocity and position of the
losses. Curves 1, 2, and 3 correspond to the electron tempergturk, 0.1,

and 0.01 eV, respectively. The pulse duratigwi * is given with respect to electron. .
Swy=2mx10 1. The region above each curve i@ corresponds to The natural length of this problem }s the wavelength
A€ol €x>1, while in (b) it corresponds taeqon/ €compi<1- of a laser radiation. The Coulomb force on the electron in

dimensionless formwe express lengths in terms aj is
then given by

analysis in the presence of the ion field. Let us start with r
equations of motion for an electron in a laser pulse of linear f=-¢ 3 1y

polarization along thg axis, . . .
where {=r /N, with r, being an electron radius. Now one

dp . . dy . can write down an equation of motion of an electron in the
——=a+vXx(nxa),

dt a:a"" ®) fields both of the ion and of the laser:
where the wave vectan is in the x direction, the electron dp . . dy_ )
momentum is denoted lyy, and the velocity by. The over- dt atftvx(nxa), dt (atf)-v. (12)

dot stands for differentiation with respect to the phase argu-

ment,t—x, andy is the relativistic energy. After some alge- | for dist 0 B dalld .
bra, one can find that the quantity-n-p is a constant of aserfor distances up to 1cm, So we expand all dynami-
cal quantitiesh, y, and so on, about the exact result, E®).

motion, which is equal toy—n-p=1 for an electron with . )
zero initial velocity. Using this invariant, we solve for the _and Eq.(lQ), the expansion parametgr beifgoa. Accorq-
proper time,~=t—x, and the displacement ingly, the first-order system of equations to be solved is

By assumption, the ion field is smaller than that of the

dp; 1
1 (- T M T RXVA20+ RX)
h(r)=5 f a2(u)du, hg(T):f a(u)du, h,=0. a9, — 7 (imh)a’(te—ho) = {f(70) yo( 7o), (13
0 0
- . . ——==_(t;—h})a%(to—hd) — [ f s+ f Y1,
In obtaining (9) we have used conservation of canonical dr 2 1a(to=ho) = ¢[x(70)Po* fy(70) Po]
transverse momentum,Xp=nxa. For an electron initially (14
at the origin, the kinetic energy is then given by dh
1 x
1 F— pl, (15)
y1)=1+ = a’(7). (10
2 dt
1
Let us now address the problem of interaction of an elec- g, ~ 71 (16)
tron with an ion in the presence of a laser pulse. We assume ,
the ion with charge staté=1 to be stationary at the origin dp; _ . X
and the electron to have zero velocity and position F_(tl_hl)a(to_ho)—ﬁy( 70) Yo( 7o), (17)
ri=(x,Yiz), when it is hit by the pulse at the point(&aee )
Fig. 3. During the body of the pulse the electron will move %: (7o) Yol 7o) (18)
along the trajectory AB, at the end of which it will gain the dr 2. 70) Yol 7o/
1432 Phys. Plasmas, Vol. 3, No. 4, April 1996 V. I. Savchenko and N. J. Fisch
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where 7p=t,—hg and f(r) is a force vector, with an elec- 4

tron’s coordinates lying on its zeroth-order trajectgpart 3. 10
AB in Fig. 2), 167 J\
* 0
X(to)=Xithy(70),  Y(70)=yi+h¥(70), z(70)=7. >_ -7 \/
(19) 1. 10
(@)

We can now subtract Eq14) from Eq.(13) to obtain an .10
expression fory; —pJ. Then we solve for the perturbation of
the proper time,

n—pi=§f [fx(u)—fy(wa(u)]du, (20) °
0 1107
« T s ¥y 10'7
ty;—hi={| ds| [fy(u)—f,(u)a(u)]du. (21 4
0 0 3. 10
With these expressions for the first-order quantities, Eq. 4107 [ ®
(13), can be solved explicitly. After integration twice by 5 4 3 2 10

parts, we obtain

pi=g é-z(T)fonUfo[fx(U)_fy(U)a(v)]dv o
T N 15107
_aZ(T)J [fx(v)—fy(v)a(v)]du> > ,
0 -25 10
ad(u) a5 107 1©
5 4 3 2 1 0

-

_gfo )+ fx(u))du,
FIG. 4. Components of the exit velocitys ,V¥,VZ, respectively, versus the

and similar expressions f@ andpj. Now the exit velocity initial x; position of the electron, witty;=0, z=0.1. The magnitude of

can be calculated usiny =py+p.(T)/[yo(T)+ v.(T)] to velocity is presented in terms af=3x10" cm—velocity o_f light, and all

give lengths are measured ln=10"° cm—wavelength of radiation. The form of
the pulse is chosen to @€ u) =sin(u), 0<u<T, whereT=6. As z—0 the

T 1 spikes on all graphs tend toeo, forming discontinuities. This corresponds
. 3 ! . . . . .
Vc_ _ gfo ( fx(U) + E a (u)fy(u)) du, (22) to electron crossing the ion at some point on its zeroth-order trajectory. The

1

periodic behavior of all plots is due to periodicity of the zeroth-order trajec-
tory of the electron in the direction.

T 3
Vé’:{f a(u)f,(u)—f,(u) 1+5 a%(u)||du, (23
0
T 1 My, =my=my,t=m,!=0, (28)
V§=—§J f (u)| 1+ = a?(u) |du. (24)
0 2 m; =[1+ 2a%(u)]. (29)

The subscript £” (cold) indicates that this solution as- This analogy will help us to understand dependence of

sumed zero initial electron velocity. The exit displacement,, on the electron’s initial positiom; . We fixedy, =0 and
. . . . . . C [ I

given in the Appendix, can be obtained by integratig ;0 1 and plotted/, vs x; (see Figs. 4 and)5For simplic-
with respect to the proper ime. _ _ ity, we chose the form of the pulse to Béu) =sin(u), 0<u

The above equations aI.Iow simple mterpre.tatlon. One<-|-’ whereT=6. The periodic behavior o7, vsx; (Fig. 4)
can treat the zeroth-order trajectory of the electiéig. 3 as g que to the periodic structure of the electron’s zeroth-order
a finite-mass string in an external force field, its shape giveRyaiectory in this direction. The spikes on the curves corre-
by parametrized equatiori9). This string has a mass tensor gn4nd to the minimum approach to the ion. Their amplitude
varying overu (u being a parameter, characterizing a current, arieg with respect ta; , because the ion divides the string in
position on the string Then the integrations in Eq$22),  \arying ratio. The spikes are singular as-0, because the
(23), and (24) are, in effect, averaging the force of the ion yistance of minimum approach also tends to 0. The plots of
over the inverse mass tensor of the string, the inverse tensgy g y; (Fig. 5, x, andz; being fixed, do not exhibit peri-

Cc I * 1 | 1 1

components given by respective coefficients in these €AUdicity, because of the lack of periodicity in the zeroth-order

tions: trajectory of the electron in this direction.
mei=1, myt=ta%(u), (25) The exit velocity and displacement fully describe the
scattering in the presence of the pulse. In Sec. IV, we use
my‘xlza(s), (26)  these quantities as initial conditions for the electron motion
. - in the field of the ion after the pulse to describe the whole
myy=[1+3a%(u)], (27)  scattering process.
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R K vl = Vg +| ayx ayy ay, Viy ] (34)
R z
5. 10 \Y Vi @y a,,) \ Vi

gy
>
> K
4107 The matrixe;; is given in the Appendix. It does not exhibit
7 @ any symmetry, because the electron—laser and electron—ion
-1.5 10 interactions possess different symmetries.
4 s 2 ! ° 1 2 So we know the exit velocity and displacement after the
laser pulse. Next, we consider the Coulomb scattering in the
. field of the ion, after the electron has interacted with the
1. 10 /\/\ pulse, to obtain the final velocity of the electron at infinity.
o The exit velocity and displacement upon leaving the pulse
> are now taken as initial conditions in the scattering by the
1107 ion. The electron energy and its angular momentum are in-
5 variants of motion. At the very moment the electron exits the
2.10 | (b) pulse,
4 3 2 - o i 2
L=|VXR] E—EVZ—E (35)
L 2 R L}
0 whereR is the radius vector of the electron at that moment
(see the Appendix
N 4 10° Let us introduce the contraction coefficient,
k —2E 36
(C) - V 1 ( )
8. 10

48 2 102 which is the ratio of the velocity at infinity., to the exit

. . . velocity V. The impact parameter is then
FIG. 5. Components of the exit velocity? VY, Vg, respectively, versus the

initial y; position of the electron, witkx;=0, z;=0.1. Plots do not exhibit |V><R|
any periodicity due to the lack of periodicity in the zeroth-order trajectory of b= (37
the electron in the direction. Vk

We are left to find the anglg betweenV, andV=Vg
(see Fig. 3 It can be done most easily in the plane of col-
lision. Using the exact solution for the electron motion, we

In this section we extend the analysis given in Sec. Ill torelate anglesp and ¢,, to R andb,
the case of nonzer¥; initial velocity of an electron and
obtain scattering matrix. We assume tNaiis nonrelativistic _ b/R—Db,/b _ (b,/b)
and find first-ordeO(V;) corrections to our previous results. cos ¢= J1+(bZ/b?)’ C0S $x= J1+(b%/b?)’ (38)
First, let us modify the quantities describing the electron mo- ’ ’

IV. SCATTERING MATRIX

tion in the wave alone. The invariant of motigg—p} will  Whereb,=1/VZ. Note that we usen=c=e=1 units in this
be section. The angle of rotatiog is then given by
Yo—Po=1-V}. (30) _[¢—o. if (V-R)<O,

X= _ TR (39
The relation between the phase argumerd ahd the proper ¢+ b, i (V-R)>0,
time 7y is then where the sign oV -R determines whether an electron will

to—hX=(1— V) 75. (31) follow part BC or BD of the trajectoryFig. 3). The scatter-

ing matrix, which relate¥ ., to V, can be written in the form
They component of momentumy, is modified in a straight-
forward way,
pi=V/+a. (32) Its structure is simple: it contracts the absolute yglue of
] _ velocity fromVg to V,, and rotate®/ in the plane of collision
Equations(30), (31), and(32) lead to the following expres- by the angle, given in(39). The axis of rotation is parallel
sion for the electron kinetic energy: to the vectom=(RxV)/(RV), which is normal to the plane
yo( 7o) = 1+ La2( 7o) + a( o)V + %az(TO)V?_ (33 of cqllision. It turns out that njatri>(40) can be most easily
obtained through the quaternion formalism. The quaternion,

To find O(V;) corrections to the exit velocity., given  \yhich rotates a vector around axisby an angley, is
in (22), (23), and(24), we will now perform the same analy-

Cik=Kk[cos x i+ sin xejjn;+(1—cosy)ning]. (40

sis as in Sec. Ill with new values tf—hg, p}, etc., given in X X

. TR ' A=cos-+nsin-. 41
(30), (32), (32, and(33), to arrive at 2 "> (41)
1434 Phys. Plasmas, Vol. 3, No. 4, April 1996 V. I. Savchenko and N. J. Fisch
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The rotation of an arbitrary vectdr can be then written in This work was supported by the U. S. Department of
the form Energy under Contract No. DE-AC02-CHO-3073.

b’ = AcheA, (42)

whe_reo stands for guatermon multiplication antl |s_the APPENDIX: CALCULATION OF THE SCATTERING
conjugated quaternion. After some algebra, E) gives MATRIX

matrix C;, (40).

Now we can write the final velocity,, as a product of Let us write first-order corrections to the exit displace-
two matrices, we have found ment due to the ion field. They are obtained by integrating
VIOO=C|j(ajkV:(+Vjc)- 43) p3(7),pY(7),pi(7), respectively, which gives

Equation (43) describes the whole scattering process from X_ _ jT 2 f“ _
point A to e (Fig. 3), which includes the interaction with the M £ 0 a(udu 0 [T~ Ty(9)a(s)]
laser and Coulomb scattering in the field of the ion. T u
The expression in parenthesed/isg, the exit velocity of _ §J' duJ
the electron due to the interaction with the field of a single 0 0
ion. It was obtained via linearization around the zeroth-order . . .
trajectory of the electron. This description of the scattering hy= _gf 2a(s)dsf [fx(s)—fy(s)a(s)]+§f a(s)
process can be incorporated into a collisional operator by 0 0 0
averaging over the initial position of the electror, in order T y
to describe the plasma response to several short pulses. The x[fx(s)_fy(s)a(s)]ds_gf duf fy(s)
derivation of such a collisional operator is, however, beyond 0 0
the scope of this paper.

a¥(s)
2

fy(s)+f,(s)|ds,

1
1+ = a?(s)

X
2

ds,

V. DISCUSSION AND CONCLUSIONS

1
1+5 a’(u) |du.

T S
In summary, in this paper we investigated the role of hi=—§f dsj fo(u)
: . . : 0 0
discrete particle effects in the energy absorption from an ul-
trashort laser pulse of high intensity. It was shown that for  Now we will determine coefficients of they; matrix
very short (<0.09 p3 and moderately intensén~0.0) (34).
pulses the change in correlational energy of the plasma at 1 |t is easy to find, usind30), (31), (32), and (33), that

eV temperature is greater than the energy stored in plasmgquations of trajectory with the first-ordex(V;) corrections
oscillations. This dominance of discreteollisional) over can be written as

collective effects, even wham 3>1, is opposite to the usual

collisional effects, which are always down in magnitude by Xo X Oxx Oxy 0 A hg
n\3. We note, however, that for very intense pulsgs;1 Yo|=|VYi|+]| oyx oy O VYl +| hyl,
with duration~0.1 ps, the energy of plasma oscillations is 2 z 0 0 o V? 0

zzZ

greater than the correlational energy, according to(EQ.

Although collisions due to initial nonrelativistic thermal where theo;; matrix coefficients are given by
velocity do not take place during the laser pulse, each elec-
tron acquires a rglativistig veloqity in the Igser pulse and o r)sz[lJraz(u)]du, Tl T)sza(u)du,
moves a certain distance in the fields of the ions. As a result 0 0
of these background fields, the exit velocity at the end of the
pul;g is affeg:tgd. This process can be called an “i_nduced ayx(r)=fra(u)du, o (D=0 T)="T.
collision” to distinguish from an ordinary Coulomb collision, 0
when the only fields present are those of the particles them-
selves.

The scattering matrix for the induced collisions, Egs.
(22—(24), and(34), is applicable to electron—ion collisions
in the presence of the_intense laser pulses. The corrections 10 r(7)={[x, + hX(7) 12+ [y; + h(7) 12+ 22132
the exit velocity and displacement of the electron can also be
used to obtain a collisional operator that would describe the ~ Then, after analysis similar to that of in Sec. Ill, thg
influence of several short pulses on the plasma. This is, hownatrix components are
ever, beyond the scope of the present paper.

And the zeroth-order trajectory is given by HE).
We will denote the electron’s radius vector, following a
zeroth-order trajectory, by

T 2 l 3
axx=1—§fo fu(s)[1+a“(s)]+ >a (s)fy(s)
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axy

T 1 )
= _gfo a(s)fx(s)+ 5 a’(s)fy(s)

Tyy(S)+ 3a3(8) oy s))
r3(s) '

T1 )
Ay~ —40 7 (s)f(s)ds,

Clyx

s
0

T
=—§L a(s)dsf (fx(s)—a(s)fy(s)

ayx(S)—a(s) ny(s) )
ri(s)

T 1+ 1a?(s)

S T
W dsf a(u)du—gffO fy(s)

0 0

xX[1+a?%(s)]ds,

0 r3(u)

T S| Oy - ) )
ayyzl—gfo a(s)dsf (U y(U)~ all)oy,(u
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T
du—gf
0

ds,

—fy(u) a(s)fy(s)+ay(s)

X

1+1 2
Ea(s)
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T S
ayz=—§fo a(s)dsfofy(u)du,
T
Azx™— _gfo fz(s)[1+a2(s)]ds,

-
Azy= _gfo f(s)a(s)ds,

T 0,48)[1+33%(s)]
az=1- fo r3(s)
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